SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems

This paper presents a parallel surrogate-based global optimization method for computationally expensive objective functions that is more effective for larger numbers of processors. To reach this goal, we integrated concepts from multi-objective optimization and tabu search into, single objective, surrogate optimization. Our proposed derivative-free algorithm, called SOP, uses non-dominated sort...

متن کامل

Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling

We present a parallel evolutionary optimization algorithm that leverages surrogate models for solving computationally expensive design problems with general constraints, on a limited computational budget. The essential backbone of our framework is an evolutionary algorithm coupled with a feasible sequential quadratic programming solver in the spirit of Lamarckian learning.We employ a trust-regi...

متن کامل

SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems

This paper introduces a surrogate model based algorithm for computationally expensive mixed-integer black-box global optimization problems that may have computationally expensive constraints. The goal is to find accurate solutions with relatively few function evaluations. A radial basis function surrogate model (response surface) is used to select candidates for integer and continuous decision ...

متن کامل

A multi-fidelity surrogate-model-assisted evolutionary algorithm for computationally expensive optimization problems

Integrating data-driven surrogate models and simulation models of di erent accuracies (or delities) in a single algorithm to address computationally expensive global optimization problems has recently attracted considerable attention. However, handling discrepancies between simulation models with multiple delities in global optimization is a major challenge. To address it, the two major contrib...

متن کامل

Parallel Tcad Optimization and Parameter Extraction for Computationally Expensive Objective Functions

The SIESTA (Simulation Environment for Semiconductor Technology Analysis) framework is an extensible tool for optimization and inverse modeling of semiconductor devices including dynamic load balancing for taking advantage of several, loosely connected workstations. Because of the increasing computational power available today, the use of evolutionary computation optimizers which usually requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Global Optimization

سال: 2016

ISSN: 0925-5001,1573-2916

DOI: 10.1007/s10898-016-0407-7